Introduction to String Theory

Humboldt-Universität zu Berlin Dr. Emanuel Malek

Exercise Sheet 14

1 Consider the effective action of two parallel, coincident D-branes

$$S = -(2\pi\alpha)^2 T_p \int d^{p+1}\xi \operatorname{Tr} \left(\frac{1}{4} F_{ab} F^{ab} + \frac{1}{2} \mathcal{D}_a \phi^I \mathcal{D}^a \phi^I - \frac{1}{4} \sum_{I \neq J} \left[\phi^I, \phi^J \right]^2 \right). \tag{1.1}$$

(a) Show that taking $\phi^i = 0$ for $i = 0, \dots, 24, A_a = 0$ and

$$\phi^{25} = \begin{pmatrix} \phi_1 & 0\\ 0 & \phi_2 \end{pmatrix} \tag{1.2}$$

with ϕ_1 and ϕ_2 constant is a solution of the effective action (1.1). Interpet the configuration (1.2) in terms of the position of the D-branes.

- (b) Compute the spectrum of the gauge fields around the vacuum (1.2). Interpret this result.
- (c) Compute the level 1 spectrum of the quantised strings ending on the D-branes. Compare this to the spectrum obtained from the effective action in (b).
- **2** Consider the spacetime $\mathbb{R}^{1,24} \times S^1$ with S^1 of radius R. The most general metric can be written as

$$ds^{2} = \tilde{G}_{\mu\nu}dX^{\mu}dX^{\nu} + e^{2\sigma} \left(dX^{25} + A_{\mu}dX^{\mu}\right)^{2}, \qquad (2.1)$$

with $\mu, \nu = 0, \dots, 24$ and X^{25} the local coordinate on S^1 , such that $X^{25} \sim X^{25} + 2\pi R$.

- (a) Let $\tilde{G}_{\mu\nu}$, A_{μ} , and σ be independent of the S^1 coordinate X^{25} . How do the fields $\tilde{G}_{\mu\nu}$, A_{μ} and σ transform under the 25-dimensional diffeomorphisms?
- (b) Decompose the Kalb-Ramond 2-form $B_{(2)}$ analogously to (2.1). What fields do you get in $\mathbb{R}^{1,24}$?
- (c) Perform a Fourier expansion of the dilaton $\Phi(X^{\mu}, X^{25})$ along S^1 . Evaluate the kinetic term of the dilaton

$$S_{\mathrm{kin},\Phi} = \int d^{26}X \,\partial_{\hat{\mu}}\Phi \partial^{\hat{\mu}}\Phi \,, \tag{2.2}$$

where $\hat{\mu} = 0, \dots, 25$ and we ignore the coupling to gravity, for the Fourier modes of the dilaton. Interpret this result.

(d) How do the Fourier modes of $\Phi(X^{\mu}, X^{25})$ along S^1 transform under 25-dimensional diffeomorphisms? Interpret this result.